Golfpijp

Uit Private Rotor Designs
Naar navigatie springen Naar zoeken springen
Crystal Clear action run.png
Golfpijp

Release status: documentation

Documents.jpg
Description
hardware
License
GPL
Author
Contributors
Categories
CAD Models
External Link

Inleiding

Een golfpijp met flenzen

Een golfgeleider is een elektromagnetische toevoerleiding die wordt gebruikt voor hoogfrequente signalen, en het geleidt microgolfenergie met een lager verlies dan coaxkabels en wordt gebruikt in microgolfcommunicatie, radars, ruimtevaart, telecommunicatie en andere hoogfrequente toepassingen. Golfgeleiders kunnen worden vervaardigd van diëlektrische of geleidende materialen, afhankelijk van de golffrequentie. In sommige situaties worden golfgeleiders gebruikt om zowel communicatiesignalen als stroom over te dragen. Rechthoekige golfgeleider is een van de eerste typen transmissielijnen die zijn ontworpen voor veel toepassingen, zoals isolatoren, detectoren, verzwakkers, koppelingen en sleuflijnen die beschikbaar zijn voor verschillende standaard golfgeleiderbanden tussen 1 GHz en meer dan 220 GHz. De rechthoekige golfgeleider ondersteunt TM- en TE-modi, maar geen TEM-golven omdat we geen uniek voltage kunnen definiëren omdat er slechts één geleider in een rechthoekige golfgeleider zit. De frequentie die niet kan worden gepropageerd door rechthoekige golfgeleiders wordt afsnijfrequentie genoemd.

Werking

Als gevolg van het skineffect zijn metalen bij zeer hoge frequenties zeer slechte geleiders voor elektromagnetische golven. Anderzijds zullen opvallende golven niet in het metaal doordringen, maar gereflecteerd worden. Hiervan wordt gebruikgemaakt in golfpijpen. De golven kunnen namelijk wel worden geleid door een diëlektricum dat door metalen geleiders begrensd wordt. De golven worden van wand naar wand gereflecteerd en zijn als het ware in de metalen buis opgesloten.

De afmeting en de vorm van de golfpijp is bepalend voor de optimale frequentie die geleid kan worden. Meestal is de breedte van de pijp groter dan de halve golflengte van de desbetreffende golf. De hoogte van de golfpijp en een eventueel aanwezig diëlektricum (bijvoorbeeld droge lucht of vacuüm) zijn bepalend voor het maximale vermogen dat kan worden getransporteerd.

Vanwege de hoge frequenties en de veelal hoge vermogens die getransporteerd worden, is een lekkende golfpijp zeer gevaarlijk. Daarom worden er in het algemeen hoge veiligheidseisen gesteld aan golfpijpen.

Skineffect

Skineffect

Het skineffect is het verschijnsel dat in geleiders, waarin een wisselstroom loopt, de elektrische stroomdichtheid|stroomdichtheid hoger wordt met het naderen van het oppervlak van de geleider. Dit komt doordat een wisselstroom ook een wisselflux heeft. Aangezien deze zijn oorzaak tegenwerkt (Wet van Lenz), is ze in het midden van de geleider tegenwerkend en werkt ze aan de rand mee. Hierdoor zullen de elektronen meer geneigd zijn zich voort te bewegen langs de buitenkant, dan langs de binnenkant.

De sterkte van het effect neemt toe met de frequentie van de wisselstroom. Het skineffect speelt daarom vooral een rol bij radiofrequente (RF) wisselstromen, te zien aan de volgende cijfers. Bij een frequentie van 50Hz is de (effectieve) indringdiepte in koper ongeveer 1 cm, bij 10 kHz is dit een 0,66 mm en bij 10 MHz nog maar 20 μm, wat inhoudt dat bij deze laatste frequentie de stroom eigenlijk slechts aan het oppervlak loopt. Het gevolg van het skineffect is dat de weerstand van een geleider sterk toeneemt bij hogere frequenties. Daarom is het beter om in HF-techniek met holle geleiders te werken.

In de praktijk geldt dit skineffect ook voor de bliksem, die beschouwd kan worden als hoogfrequent.

Vergelijking

Bij een geleider met cirkelvormige doorsnede verloopt de stroomdichtheid J als functie van de afstand d tot het oppervlak:

.

De parameter , de (effectieve) indringdiepte, neemt sterk af met toenemende frequentie.

.

Daarin is

de magnetische permeabiliteit;
σ de conductiviteit van het materiaal;
ω de hoekfrequentie.

Toepassing

Het skineffect is in het algemeen nadelig, maar vindt ook praktische toepassing. Brengt men een werkstuk dat aan het oppervlak een warmtebewerking (oppervlakteharding) moet ondergaan, in een hoogfrequent veld, dan zal ten gevolge van het skineffect alleen aan het oppervlak een stroom lopen en daar warmteontwikkeling geven.

Dit effect is vooral bekend bij radiofrequente wisselstromen. Bij het ontwerp van zend- en ontvangantennes moet ermee rekening worden gehouden dat het oppervlak van de toegepaste geleiders dus de meeste RF-stroom zal voeren.

Van deze eigenschap wordt ook gebruikgemaakt door voor sommige toepassingen de antenne uit hol buismateriaal te maken, wat scheelt in kosten en gewicht. Dit was dan ook het geval bij de traditionele tv-antennes die men vroeger vaak op daken van huizen aantrof: de zgn. 'hark'-antennes of beter yagi-antennes.

Behalve holle buis, wordt ook gebruikgemaakt van litzedraad. Naast het voordeel van de buigzaamheid bij netsnoeren is er dan het voordeel van een grotere effectieve doorsnede van het koper bij hoogfrequente stromen. In dit laatste geval moeten wel alle dunne deeldraadjes onderling geïsoleerd zijn.

Wet van Lenz

Magnetische flux door een rechthoekige geleidende lus met oppervlakte met tussenhoek in de formule

De wet van Lenz is een natuurkundige wet over elektromagnetisme. De wet stelt dat een veranderende magnetische flux in een elektriciteit geleidende lus een elektrische spanning en daarmee een stroom opwekt die een tegengesteld magnetisch veld veroorzaakt. Een geleidende lus werkt dus een veranderende magneetflux tegen. De wet van Lenz is een gevolg van de inductiewet van Faraday, waarin de tegenwerking tot uiting komt in het minteken.

 Es wird in dem vor dem Nordpol eines Magneten bewegten Leiter durch elektrodynamische Vertheilung ein galvanischer Strom entstehen, der, wenn man sich in der Art in den bewegten Leiter versetzt, daß man das Gesicht zum Nordpol wendet und sich dabei mit dem Leiter rechts hinbewegt, einen vom Kopf zu den Füßen durchströmt.

Formulering met wetten van Maxwell

De wet van Lenz kan gezien worden als een gevolg van de vierde wet van Maxwell, ook wel inductiewet van Faraday genoemd, die stelt dat een veranderend magneetveld een elektrisch veld opwekt. In de vectorformulering van Oliver Heaviside luidt deze wet van Maxwell

Daarin is:

de Rotatie (vectorveld)
de elektrische veldsterkte
partiële tijdsafgeleide en
het Magnetisch veld

Door toepassing van de stelling van Stokes wordt de volgende integraalvorm gevonden, die tot de bovengenoemde formule voor een winding leidt:

met

de infinitesimale verandering van de plaatsvector langs de rand van het oppervlak
het oppervlak waarover geïntegreerd wordt
een infinitesimaal oppervlakte–element
de magnetische flux en
elektrische inductiespanning,

Vorm & Spec's

Rechthoekige golfgeleiders ondersteunen TE- en TM-modi, ideaal voor radartoepassingen met hoog vermogen, die tot 1 MW aankunnen. Circulaire golfgeleiders ondersteunen TE-, TM- en hybride modi, geschikt voor uitzendingen vanwege hun circulaire polarisatiemogelijkheden en robuustheid in roterende verbindingen.

Code's & Afmetingen Rechthoekig

Specificatie van stijve rechthoekige golfgeleiderbuis koper messing brons

Waveguide name Recommended frequency Cutoff frequency
lowest order mode
Cutoff frequency
next mode
Inner dimensions of waveguide opening
EIA RCSC * IEC A inch[mm] B inch[mm]
WR2300 WG0.0 R3 0.32 to 0.45 GHz 0.257 GHz 0.513 GHz 23 [584.2] 11.5 [292.1]
WR2100 WG0 R4 0.35 to 0.50 GHz 0.281 GHz 0.562 GHz 21 [533.4] 10.5 [266.7]
WR1800 WG1 R5 0.45 to 0.63 GHz 0.328 GHz 0.656 GHz 18 [457.2] 9 [228.6]
WR1500 WG2 R6 0.50 to 0.75 GHz 0.393 GHz 0.787 GHz 15 [381] 7.5 [190.5]
WR1150 WG3 R8 0.63 to 0.97 GHz 0.513 GHz 1.026 GHz 11.5 [292.1] 5.75 [146.05]
WR975 WG4 R9 0.75 to 1.15 GHz 0.605 GHz 1.211 GHz 9.75 [247.65] 4.875 [123.825]
WR770 WG5 R12 0.97 to 1.45 GHz 0.766 GHz 1.533 GHz 7.7 [195.58] 3.85 [97.79]
WR650 WG6 R14 1.15 to 1.72 GHz 0.908 GHz 1.816 GHz 6.5 [165.1] 3.25 [82.55]
WR510 WG7 R18 1.45 to 2.20 GHz 1.157 GHz 2.314 GHz 5.1 [129.54] 2.55 [64.77]
WR430 WG8 R22 1.72 to 2.60 GHz 1.372 GHz 2.745 GHz 4.3 [109.22] 2.15 [54.61]
WG9 2.20 to 3.30 GHz 1.686 GHz 3.372 GHz 3.5 [88.9] 1.75 [44.45]
WR340 WG9A R26 2.20 to 3.30 GHz 1.736 GHz 3.471 GHz 3.4 [86.36] 1.7 [43.18]
WR284 WG10 R32 2.60 to 3.95 GHz 2.078 GHz 4.156 GHz 2.84 [72.136] 1.34 [34.036]
WG11 3.30 to 4.90 GHz 2.488 GHz 4.976 GHz 2.372 [60.2488] 1.122 [28.4988]
WR229 WG11A R40 3.30 to 4.90 GHz 2.577 GHz 5.154 GHz 2.29 [58.166] 1.145 [29.083]
WR187 WG12 R48 3.95 to 5.85 GHz 3.153 GHz 6.305 GHz 1.872 [47.5488] 0.872 [22.1488]
WR159 WG13 R58 4.90 to 7.05 GHz 3.712 GHz 7.423 GHz 1.59 [40.386] 0.795 [20.193]
WR137 WG14 R70 5.85 to 8.20 GHz 4.301 GHz 8.603 GHz 1.372 [34.8488] 0.622 [15.7988
WR112 WG15 R84 7.05 to 10 GHz 5.26 GHz 10.52 GHz 1.122 [28.4988] 0.497 [12.6238]
WR102 7.00 to 11 GHz 5.786 GHz 11.571 GHz 1.02 [25.908] 0.51 [12.954]
WR90 WG16 R100 8.20 to 12.40 GHz 6.557 GHz 13.114 GHz 0.9 [22.86] 0.4 [10.16]
WR75 WG17 R120 10.00 to 15 GHz 7.869 GHz 15.737 GHz 0.75 [19.05] 0.375 [9.525]
WR62 WG18 R140 12.40 to 18 GHz 9.488 GHz 18.976 GHz 0.622 [15.7988] 0.311 [7.8994]
WR51 WG19 R180 15.00 to 22 GHz 11.572 GHz 23.143 GHz 0.51 [12.954] 0.255 [6.477]
WR42 WG20 R220 18.00 to 26.50 GHz 14.051 GHz 28.102 GHz 0.42 [10.668] 0.17 [4.318]
WR34 WG21 R260 22.00 to 33 GHz 17.357 GHz 34.715 GHz 0.34 [8.636] 0.17 [4.318]
WR28 WG22 R320 26.50 to 40 GHz 21.077 GHz 42.154 GHz 0.28 [7.112] 0.14 [3.556]
WR22 WG23 R400 33.00 to 50 GHz 26.346 GHz 52.692 GHz 0.224 [5.6896] 0.112 [2.8448]
WR19 WG24 R500 40.00 to 60 GHz 31.391 GHz 62.782 GHz 0.188 [4.7752] 0.094 [2.3876]
WR15 WG25 R620 50.00 to 75 GHz 39.875 GHz 79.75 GHz 0.148 [3.7592] 0.074 [1.8796]
WR12 WG26 R740 60 to 90 GHz 48.373 GHz 96.746 GHz 0.122 [3.0988] 0.061 [1.5494]
WR10 WG27 R900 75 to 110 GHz 59.015 GHz 118.03 GHz 0.1 [2.54] 0.05 [1.27]
WR8 WG28 R1200 90 to 140 GHz 73.768 GHz 147.536 GHz 0.08 [2.032] 0.04 [1.016]
WR6 WG29 R1400 110 to 170 GHz 90.791 GHz 181.583 GHz 0.065 [1.651] 0.0325 [0.8255]
WR7 WG29 R1400 110 to 170 GHz 90.791 GHz 181.583 GHz 0.065 [1.651] 0.0325 [0.8255]
WR5 WG30 R1800 140 to 220 GHz 115.714 GHz 231.429 GHz 0.051 [1.2954] 0.0255 [0.6477]
WR4 WG31 R2200 172 to 260 GHz 137.243 GHz 274.485 GHz 0.043 [1.0922] 0.0215 [0.5461]
WR3 WG32 R2600 220 to 330 GHz 173.571 GHz 347.143 GHz 0.034 [0.8636] 0.017 [0.4318]
WR2 - - 325-500 GHz - - 0.020 [0.508] 0.010 [0.254]
WR1 - - 750-1100 GHz - - 0.010 [0.254] 0.0050 [0.127]

De rechthoekige golfgeleider ondersteunt TM- en TE-modi, maar geen TEM-golven

Code's & Afmetingen Rond

FrequencyBand Frequency Range Circular WaveguideDiameter, Inches (mm) Cover Flange (Brass)MIL-F- 3922 UG Flange Type
X LOW 8.2-9.97 1.094 (27.79) 53-001 UG-39/U Square
MID 8.5-11.6 0.938 (23.83)
HIGH 9.97-12.4 0.797 (20.24)
Ku LOW 12.4-15.9 0.688 (17.48) 53-005 UG-1666/U Square
MID 13.4-18.0 0.594 (15.08)
HIGH 15.9-18.0 0.500 (12.70)
K LOW 17.5-20.5 0.455 (11.56) 54-001 UG-595/U Square
MID 20-24.5 0.396 (10.06)
HIGH 24-26.5 0.328 (8.33)
Ka LOW 26.5-33 0.315 (8.00) 54-003 UG-595/U Square
MID 33-38.5 0.250 (6.35)
HIGH 38.5-40 0.219 (5.56)
Q LOW 33-38.5 0.250 (6.35) 67B-006 UG-383/U Round
MID 38.5-43 0.219 (5.56)
HIGH 43-50 0.188 (4.78)
U LOW 40-43 0.210 (5.33) 67B-007 UG-383/U-M Round
MID 43-50 0.188 (4.78)
HIGH 50-60 0.165 (4.19)
V LOW 50-58 0.165 (4.19) 67B-008 UG-385/U Round
MID 58-68 0.141 (3.58)
HIGH 68-75 0.125 (3.18)
E LOW 60-66 0.136 (3.45) 67B-009 UG-387/U Round
MID 66-82 0.125 (3.18)
HIGH 82-90 0.094 (2.39)
W LOW 75-88 0.112 (2.84) 67B-010 UG-387/U-M Round
HIGH 88-110 0.094 (2.39)
F LOW 90-115 0.089 (2.26) -UG-387/U-M Round
HIGH 115-140 0.075 (1.91)
D LOW 110-140 0.073 (1.85) -UG-387/U-M Round
HIGH 140-160 0.059 (1.50)
G LOW 140-180 0.058 (1.47) -UG-387/U-M Round
HIGH 180-220 0.045 (1.14)
--- --- 170-260 0.049 (1.25) -UG-387/U-M Round
--- --- 220-325 0.039 (0.99) -UG-387/U-M Round

--